Topics

- Description
- Capabilities
- Methods

Linear Interference Excision Methods

- Previous section has focused on linear interference excision <u>capabilities</u> it remains to discuss algorithms that can achieve this capability in practice
- Linear algorithms can be divided into two broad (nonexclusive) classes of techniques:
 - Channel-directed or <u>calibrated</u> methods
 - » Combiner weights developed based on known or estimated propagation channel
 - » Includes <u>parametric</u> methods based on DF of the SOI or SNOI's (DF-aided copy methods), and nonparametric methods based on measurement and feedback of channel state information (CSI) to the receiver
 - Data-directed or uncalibrated methods
 - » Combiner weights based on known/estimated content or structure of the transmitted SOI
 - » Channel estimation/parameterization typically not needed
 - » Includes both nonblind and blind methods
- Both classes include <u>cooperative</u> methods in which the SOI emitter aids the interference excision process
 - Provision of emitter locations to aid parametric channel-directed methods
 - Exploitable SOI pilots or structure
- Choice of algorithms further influenced by characteristics of the environment and application
 - Strong SNOI's emphasize robust methods (e.g., voltage domain)
 - Highly dynamic SNOI's or SOI's (e.g., VoIP) emphasize rapidly converging methods

Comparison of General Methods

Method	Description/Example	Advantages	Limitations				
CSI-based nonparameter-	Measures channel-state at Tx, feeds back to Rx on side channel.	Easiest approach for re- ceiver	Requires feedback path (cost, latency, vulnerability)				
ized channel- directed)	Requires measurement <u>and</u> provision (feedback) of CSI to receiver	Can track arbitrary (slowly varying) channels	Hypersensitive in strong interference				
			Fails in strong interference				
Model based (parameter-	Develops channel state from stored channel models or cal data	Potentially fastest adaptation if parameters avail-	Requires parameters (feed-back path, loading limits)				
ized channel	Requires estimation or provision of	able/observable	Hypersensitive in strong in-				
directed)	emitter parameters (e.g., geo/DOA)	Geo-observables typically	terference				
		provided as part of algorithm	Very sensitive to parameter error, cal/modeling error				
Pilot-based (nonblind data-	Uses known SOI pilots or training signals to develop weights	Highest SINR; strongest excision capability	Requires knowledge or provision of pilot				
directed)	Requires known SOI pilot, estima-	FOA and TOA provided	Requires allocation of				
	tion of FOA and TOA for sync	Higher loading limits	channel resources to pilot				
Structure based (blind	Uses known/induced SOI structure to develop weights	Performs under strong inter- ference	Sensitive to SOI model error				
data-directed)	Requires known SOI structure	Capture without FOA/TOA	Potential capacity loss due				
		Higher loading limits	to imposition of structure				

Comparison of SOI Capture Results, Extreme Environment (16.51 dB Ideal Max SINR)

Parametric Channel-Directed

- Linearly-constrained power minimization, known DOA
- 6.85 dB misadjustment

Blind Data-Directed

- Static least-squares CMA
- 0.15 dB misadjustment

Nonblind Data-Directed

- FFT least-squares algorithm
- 0.07 dB misadjustment

Example Data-Directed Methods

 Known components Pilots, preamble, midambles OFDM training signals 	Example PHY GSM, UMTS, 802.11 DSS P 802.11 OFDM PHY's	Example Algorithm HY FFT least-squares (FFT-LS) FFT-LS
 Limited time/frequency support Limited time support Limited frequency support Known DSSS code 	GSM, Bluetooth GSM, Bluetooth 802.11, UMTS	Time-gated dominant mode prediction (TG-DMP) Frequency-gated DMP (FG-DMP) Code-gated DMP (CG-DMP)
 Self-coherence properties BPSK, ASK, OOK, MSK, CSK PAM PHY OFDM cyclic prefix 	802.11, Zigbee GSM/EDGE 802.11, 802.16, LTE DL	Conjugate self-coherence restoral (C-SCORE) Auto-SCORE (A-SCORE) Auto-SCORE (A-SCORE)
 Modulus properties Constant waveform modulus Constant symbol modulus EDC Multiple symbol moduli Known symbol constellation 	GSM, Bluetooth GE, 802.11 DSS, CCK, OFDM 802.11 OFDM, 802.16 DL 802.11, 802.16 OFDM	,

Example Nonblind Data-Directed Method: FFT Least-Squares

- Applicable to applications in which the signal of interest contains a known or estimable pilot with an unknown delay or frequency offset
 - GSM training sequence code (TSC) (8 possible)
 - Pilot modulated bits on UMTS UL-DPCCH (4 possible in uncompressed slot formats)
 - 802.11 DSS and CCK preamble (two possible preambles more if nonstandard initial state used)
 - 802.11 OFDM long training sequence (L-LTF); 802.11n HT-LTF
 - 802.11 OFDM short training sequence (L-STF), HT-STF, pilot subcarriers, low dispersion channels
- Straightforward extension of <u>least-squares</u> method for capture of signals with unknown FOA or TOA
 - Mechanized at low cost using QRD and FFT algorithms
 - Coreware available for implementation in FPGA (e.g., Xilinx FFT and Accelware cores)

Drawbacks:

- Requires knowledge/search over pilot signal
- Only optimizes SINR over the pilot interval or channel
 - » Limits applicability to many commercial waveforms
 - » Vulnerable to intelligent jamming measures if not added correctly

Example: GSM Training Sequence Code (TSC)

Multiframe 0						Multifr	rame 1				Multifr ms <u>ad</u>	ame 2 apt fra		Multiframe 3					
Slot 0.0	Slot 0.1	Slot 0.2	Slot 0.3	Slot 0.4	Slot 0.5	Slot 0.6	Slot 0.7	Slot 1.0	•••	Slot 23.7	Slot 24.0	Slot 24.1	Slot 24.2	Slot 24.3	Slot 24.4	Slot 24.5	Slot 24.6	Slot 24.7	
BN E	BN B	N BN	•••	BN 60	BN ••	BN	BN 71	•••		3N	BN 86	BN 87		N BN	I BN 5 146	BN 147	8.25 G		

	Midamble Bit (GSM 5.02, A = BN61, Z = BN86)																									
TSC	Α	В	С	D	Е	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	T	U	٧	W	X	Υ	Z
0	0	0	1	0	0	1	0	1	1	1	0	0	0	0	1	0	0	0	1	0	0	1	0	1	1	1
1	0	0	1	0	1	1	0	1	1	1	0	1	1	1	1	0	0	0	1	0	1	1	0	1	1	1
2	0	1	0	0	0	0	1	1	1	0	1	1	1	0	1	0	0	1	0	0	0	0	1	1	1	0
3	0	1	0	0	0	1	1	1	1	0	1	1	0	1	0	0	0	1	0	0	0	1	1	1	1	0
4	0	0	0	1	1	0	1	0	1	1	1	0	0	1	0	0	0	0	0	1	1	0	1	0	1	1
5	0	1	0	0	1	1	1	0	1	0	1	1	0	0	0	0	0	1	0	0	1	1	1	0	1	0
6	1	0	1	0	0	1	1	1	1	1	0	1	1	0	0	0	1	0	1	0	0	1	1	1	1	1
7	1	1	1	0	1	1	1	1	0	0	0	1	0	0	1	0	1	1	1	0	1	1	1	1	0	0

Cyclic structure

Example: GSM Training Sequence Code (TSC)

Exploitable Pilot

- Known complex amplitude over TSC time segment
- Cyclic structure over first & last 10 TSC symbols
- Unknown (estimable) interframe phase & carrier offset

FFT-LS Algorithm

Example QRD: Modified Gram-Schmidt Orthogonalization

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_M \end{bmatrix} \longrightarrow \mathbf{QRD} \longrightarrow \mathbf{QRD} \longrightarrow \mathbf{QRR}$$

$$\mathbf{X} = \mathbf{QR}$$

$$\mathbf{Q} = \mathbf{Q}_1 \quad \cdots \quad \mathbf{Q}_M \quad \mathbf{Q}_M$$

Demonstration for Extreme Excision Example

FFT-LS FOA Spectra Each Emitter, TBP = 256

FFT-LS SOI Extraction Performance, 256-Symbol TBP

Implementation in Fully Adaptive MIMO Networking Transceiver*

US 7,248,841 and patents pending

802.11 Compatible PHY Time Framing

Multiport PHY Transmit Processing

Multiport PHY Receive Processing

Receive Adaptation Algorithm

Example Network Simulation

Detect Performance, 1% Miss-Rate, FAR (4 Misses, False Alarms/Second)

- Detects intended transmit nodes at negative receive SINR's
 - -6 dB maximum attainable SINR for TBP of 16, in single 1.25 ms frame
 - -10 dB max SINR at TBP of 32
 - Equivalent to -9 dB to -19 dB receive SINR (LPD)
- Very low adaptation overhead (87%-98% link efficiency)
- Easily scalable in antenna or TBP dimensions

Example Throughput per Port (Mbps/Port), 30 dB Max Attainable SINR

- Reflects tradeoff between adapt overhead & performance
 - Adapt TBP sets maximum efficiency
 - Adapt performance sets actual SINR & Capacity

Adaptation Algorithm Complexity (Expected DSP Operations), Mcps/Port

- All TBP's achievable in SW at reasonable operations per port
 - Fit within low-cost C6701 computational cycles
 - 2/3 derating added to account for memory transfer issues
- All TBP = 16 ports achievable on a single DSP, 6 or fewer ANT's and ports (≤ 120 Mcps total operations)

Transceiver Complexity (Expected Coreware Operations), Mcps/Port

- Performance nearly invariant to number of antennas!
 - Reflects <u>linear</u> complexity growth with number of ANT's
 - Operations dominated by OFDM modem!

Implementation Considerations

- Theoretical results will be limited in practice by a host of realistic system issues:
 - System and environment noise
 - Receiver bandwidth
 - Channel/array modeling error
 - Platform dynamics
 - Environment dynamics
 - Receiver precision
 - » LNA nonlinearity
 - » LO phase noise, IQ imbalance
 - » Cross-sensor filter mismatches (BPF, LNA harmonic filter, antialiasing LPF's, ADC hold time)
 - » ADC precision
 - Adaptation algorithm complexity
 - » Steepest descent versus rapidly converging methods
 - » Power-domain (matrix inversion) versus voltage domain (QRD)
 - Time-bandwidth product constraints (e.g., SOI/pilot duration, interarrival times)
- All of these issues will limit interference excision performance
 - Number of interferers that can be excised
 - Depth of nulls produced
- Results can be highly dependent on excision structures and methods chosen